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Abstract

Let a and b be integers 4 < a < b. We give simple, sufficient conditions
for graphs to contain an even [a, b]-factor. The conditions are on the order
and on the minimum degree, or on the edge-connectivity of the graph.
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1 Introduction

We denote by G a graph of order n = |V(G)|. For a vertex z in V(G) let
dg(z) denote its degree. By 0 = 6(G) = min{dg(x)|x € V(G)} we denote the
minimum degree in G. Let X,Y be an ordered pair of disjoint subsets of V(G),
and f, g be mappings from V(G) into N. By e(X,Y) we denote the number of
edges with one endvertex in X and the other in Y. By A(X,Y), we denote the
number of odd components in G — (X UY). A component C' of G — (X UY)

is called odd if e(C,Y) + Z f(c) is an odd number. An even factor of G is
ceV(C)

a spanning subgraph all of whose degrees are even. If g(x) < f(x) for all z in

V(G), by a [g, f]-factor we understand a spanning subgraph F' of G satisfying

g(x) <dp(x) < f(x), for all z € V(G).

Theorem 1 (Lovéasz’ parity [g, f]-factor theorem/13/,/3]).
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Let G be a graph and let g, f be maps from V(G) into the nonnegative integers
such that for each v € V(G), g(v) < f(v) and g(v) = f(v) (mod 2). Then G
contains a |g, f]-factor F' such that dp(v) = f(v) (mod 2), for each v € V(G), if
and only if, for every ordered pair X,Y of disjoint subsets of V(Q)

() ROGY) = 3 @)+ 0l) = Y daly) + e(X,Y) <0,

reX yey yey

Tutte’s f-factor theorem is surveyed in [1]. Let us recall other results on |[a, b]-
factors. In [7], Kano and Saito proved that, for any nonnegative integers k,r, s, ¢
satisfying k < r, 1 < r ks < rt, every graph with degrees in the interval [r,r + s
has a [k, k + t]-factor. Berge, Las Vergnas, and independently Amahashi and
Kano, proved for any integer b > 2, that a graph has a [1, b]-factor if and only
if b|N(X)| > |X]| for all independent vertex sets X of the graph. Kano proved
a sufficient condition for a graph to have an [a, b]-factor giving a condition on
the sizes |[N(X)| for subsets X of V(G) [8]. Cui and Kano generalized Tutte’s
1-factor theorem. They consider a map f : V(G) — {1,3,5,...} and call F' an
odd [1, f]-factor of G if F is a factor of G with dp(v) odd and dp(v) € [1, f(v)] for
all vertices v in G. They prove that G has an odd [1, f]-factor if and only if G— X

has at most Z f(x) components of odd cardinality for any subset X C V(G)

zeX
[5]. Then,Topp and Vestergaard restrict the number of subsets to be considered

above, and, as a consequence, proved that a graph of even order n in which no
vertex v is the center of an induced K, w41 -star has an odd [1, f]-factor [15].
In [9, 10], Kouider and Maheo prove the existence of connected [a,b] factors in
graphs of high degree. For even factors with degrees between 2 and b we establish
a sufficent condition in [11].

Theorem 2 Let b > 2 be an even integer and let G be a 2-edge connected graph
2
with n vertices and with minimum degree 6(G) > min{3, b+—n2} Then G contains

an even [2,b]-factor.

We shall now generalize this to even factors with degrees between a and b, where
a is an even integer > 4.

2 Results

Let a,b, a < b, be even, positive integers. In the inequality (*), we substitute
e(X,Y) by | X||Y], and derive a sufficient condition for existence of an even |[a, b]-
factor in G-

() h(X,Y)—=blX|+alY|—=6lY|+ |X]||Y] <O0.
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We shall prove the following results.

Theorem 3 Let a,b be two even integers satisfying 4 < a < b. Let G be a 2-edge
(a+b)? 3(a+b)
b 2

. Then G has an even |a, b]-factor.

connected graph of order n at least max{ }, and of minimum

degree & at least
a+

3
Example 1. Take even integers a, b such that a > 12, b = 2a?, let § = ?a +4

and let G be the graph which consists of 2a — 2 disjoint copies of a complete
graph K1, each copy joined by one edge to a common vertex y.

3
The order of G is n = <?a +5)(2a — 2) + 1 = 3a* + Ta — 9, and it is easy to see

b)* 3 ;

that n > max { <a4l-) ) , é(a + b)} The minimum degree of G is § = ?a+4 and
2 B 9 B

an follows from an_ _ a(3a” +7a —9) _3a*+T7a—9 <

the i lity 6 >
e inequality e

a2 + 7 3

% < §a+ 3 So G is not 2-edge connected but satisfies all other conditions
a

of Theorem 3. The graph G has no even [a, b]-factor F', because F' must contain

an edge from y to K, one of the complete graphs Ky, and the rectriction of F'

to K should contain exactly one odd vertex, which is impossible.

Example 2. For a positive integer & > 5, let a« = 2k + 2 and b = ka. Let
n = k(3k 4+ 2) + 1. We consider a graph G of order n, composed of k vertex
disjoint copies of the complete graph K3;.o , and an external vertex x( joined
to each copy by 3 edges. This graph is 2-edge connected, its minimum degree is

b)? 3b
0 =3k > afb’ and n > w,n > 5 In an even [a, b]-factor F' of G the
a
vertex xy must be joined to at least 2k 4 2 other vertices, so in F' at least one of
the K3i19's, say K, is joined to xy by exactly 3 edges. Thus the graph K should

have a subgraph, namely K N F', with an odd number of odd vertices. Hence GG
has no even [a, b]-factor.

a+b a+ 2a? a 2a + 1

an
a+b

This example shows that even if GG is 3-edge connected the conditions o >

(a+b)?

and n > max{ ,3b/2} are not sufficient for existence of an even [a, b]-

factor, even if a is much more smaller than b.

Theorem 4 Let a > 4 and b > a be two even integers. Let G be a 2-edge

(a+b)? an a
b

and of minimum degree at least

ted h d > .
connected graph of order n > a+b+ 5

Then G has an even [a, b]-factor.



In the following result, we have a weaker condition on the order, but a stronger
one on the edge-connectivity.

Theorem 5 Let a > 4 and b > a be two even integers, and let k > a +

2
min {\/5, é} Let G be a k-edge-connected graph of order n > (a—il—)b)
a

and

of minimum degree at least anb. Then G has an even [a, b]-factor.

a+

Example 3. Let a, b, k be integers such that b > 3a?, and k < a—1; furthermore
a,b are even and k is odd. We define a k-connected graph G as follows.

Let Y be a set k independant vertices, and consider a family of k£ 4 2 complete
graphs H; for 1 < i < k+ 2 such that H; = K, for i < k+ 1, and Hy,o =
Ky 30— (k4+1)(a+3)+1- Bach y € Y is joined to exactly a + 1 vertices, one in H; for
each 7, 1 <i < k+ 1, and a — k vertices in Hy.5 so that no two vertices of Y
have a common neighbour. So dy(y) = a+ 1, for each y € Y. The order n of G is
3a+b. As b > 3a?, one can verify that § > aa—fb' Thus G satisfies all conditions
in Theorem 5, except the one on k. Suppose that G has an even |a, b]-factor F.
Now, let y be any vertex in Y. As dg(y) = a+ 1 and a + 1 is odd, it follows
that dp(y) = a. Then necessarily, there exists a copy H; for some ¢ < k such
that eq(Y, H; ) = ep(Y, H; ). It follows that the restriction of the factor F' to H;
has k£ odd vertices; as k is odd, that is impossible. So, the graph G has no even
[a, b]-factor.

3 Proofs

We shall use Claims 1-4 below for the proof of Theorem 3. First we establish the
truth of (*) for a large class of ordered pairs X, Y.
Let 7(X,Y) = h(X,Y) = b|X| + alY| = > da(y) + e(X,Y).

yey

2
The hypotheses of Theorem 3 imply that § > max {3—;, a+ %}

Claim 1 Inequality (*) holds if —b| X |+ a|Y| < 0.

Proof. Recall, that for any odd component C, b|V (C)|+ e(C,Y) is odd; as b is
even, that implies e(C,Y’) > 1. Hence, between Y and each odd component of
G — (X UY) there is at least one edge, therefore h(X,Y) +e(X,Y) < Z da(y),

yey
and (*) follows as —b| X |+ a|Y| < 0. O



Claim 2 Inequality (*) holds if |Y| > a + 0.

Proof. Let —b|X|+ a|]Y| = p. By Claim 1, we may assume p > 0. By definition
of h(X,Y), we have | X|+ |Y|+ h(X,Y) < n. Then we obtain

alY|~p _ aln—h(X,Y) = |X]) = p

X pu—
| | b —_ b Y
and thus HX Y
|X‘§a’(n_ ( ) ))_p
a+b
50 h(X,Y
(X, V) < |X|y| < 2 M) Z by
a+b
By hypothesis on § we have
an
— d < Y| < — Y.
S doly) < —alY| <~ Y]

yey

That yields the inequality

H(XY) S hXY) 4 p— gy O PETD 2Ry

—i—b‘ |+ a+b

So now, since |Y| > a + b, we get

a(h(X,Y) + p)
a+b
As a > 4 and p > 0, we conclude that 7(X,Y) <0 and (*) is proven. O

T(X,Y) < h(X,)Y)+p—

Y[ <1 -a)(h(X,Y) +p).

b
By Claims 1 and 2 we may henceforth assume 0 < —|X| < |Y|<a+b—1.
a

b

Proof of Theorem 3. We assume 0 < —|X| < |Y| < a+ b— 1 and, following
a

the different values of |Y|, we proceed to prove that 7(X,Y") < 0.

As h(X,)Y) <n—|X| = Y], 7(X,Y) is bounded as follows:

7(X,Y) < h(X,Y)=b|X|+alY|=0|Y |+ X||Y| < n—(0—a+1)|Y|+| X]|(]Y|-b-1),
and therefore, to prove 7(X,Y) < 0 it suffices to prove that

(% % %) n—0—a+ Y|+ |X|(|Y]-b—-1) <0.
Case |[Y| > b+ 1.

Let us set

G(Y]) =n— (6 —a+ DY+ ZVI(Y]-b—1)

As | X| < %|Y|, we see that (***) will follow if ¢(|Y]) < 0.



Claim 3 #(]Y]) <0.

Proof. For Y| varying in the interval of integers, [b+ 1,a+b— 1], the maximum
value of the parabola ¢ is attained at an endpoint of the interval. In both ends
we shall show that ¢(|Y|) <0.

pb+1)=n—(0—a+1)(b+1);

and as —) < _aa—fb’ we get

b—ab

b+1) < bta—b—1.
pb+1) <oy abta

(a+b)?
b
pb+1) < (a+b)(1—a)—(b+1)(1—a)=—(1-a)*<0.

At the other endpoint,

¢(a+b—1):n+(—(5—a+1)+%(a—2)> (a+b-—1).

2a+b—a®—ab
a+b

As —n < — , we obtain

1
Asd > aa—fb’ we get ¢p(a+b—1) <n +(a+b—1)(a2—2a+ab—b)g.

b 2
Now the inequalities n > (a —Z ) and 2a —a®*+b—ab = —a(a—2) —bla—1) <0
imply

2a+b—a®—ab

dla+b—1) < 7 (a+b—a—-b+1)
blatb—1)< —a(a — 2)b— bla—1) <o.
This proves Claim 3. g

Henceforth we may assume |Y| <band |X| <a—1,as |X| < %|Y|.

Let H be the set of odd components C of G — (X UY). Then, H = H,; U H,
where H; is the set of the odd components C' having e(C,Y) = 1, and H, is
the set of those for which e(C,Y) > 3. Let us set h = h(X,Y) = |H| and

Claim 4 h; <



Proof of Claim 4. A component C' in H; has at least two vertices. Otherwise
C' = {c} and, the degree of the vertex ¢ could be at most | X|+ 1; and, as | X| <

3
a — 1, then dg(c) < a; that contradicts dg(c) > 6 > Ea_ So the component C'

contains a vertex ¢’ not joined to any vertex in Y, and hence having at least § —| X|

—1Y
neighbours in C, therefore |C| > § — | X| + 1 and we obtain hy < 5117|||X|

We continue with the proof of Theorem 3.
Case |Y| < b and | X| = 0.

To prove that 7(X,Y) < 0 we shall show that

h(X,Y)+alY] = d(y) <0.

yey

1
As G has no bridge, and |X| = 0 necessarily hy =0, h = hy and h < 3 Zd(y).
yey
Then

7(X,Y) < —% Zd(y) +alY] <|Y|(a — 2%)

yey

3
As § > ;, we conclude 7(X,Y) < 0.

From now, |Y| < b and |X| > 1.
Case |Y|<band 1 < |X|<a-—1.

We note that
D d(y) = e(Y,H) + e(X,Y), and e(Y, H) > hy + 3hy = 3h — 2hy, so

yey

3h <) dly)—e(X,Y) + 2hy ;

yey
s Ty dly) — e(XY) + 2h
—_ 3 *
By Claim 4, then
B < Eer d(y) - G(X, Y) T 2n
- 3 3(0+1—1|X|)

Recalling 7(X,Y) = h—b| X |+a|Y]|— Z d(y)+e(X,Y), we obtain the following
yey
upper bound for 7(X,Y).



2yey Ay) —e(X,Y) 2n
— bl X Y.
3 tagrioxpy  AXIFaYl
From e(X,Y) < |X||Y]| and Zd(y) > 0|Y'| we obtain
yey

2|Y]| 2n
2y Y .
5 0 Y+ s TR

T(X,Y) < =2

T(X,Y) <

3
As § > ;’ this gives

Y5
—2% +1XI(

2|Y] 2n

Inserting |Y| < b yields

_bX] N 2n
3 30+1—1|X]|)

7(X,Y) <

Then 7 is strictly positive if and only if

2n
bl X| < ——————
X1 d+1—|X|
in other words if
2
(# % %) IX[(6+1— | X]) < 7”

Let us consider the left side of this inequality as a function f(]X]) of |X|. We
have assumed 1 < | X| <a—1 <.

For | X| varying in the interval [1, ] the function f has its minimum for | X| =1
and | X| = 0, namely f(1) = f(6) = 6. Hence inequality (* * %) implies that

2
o< %L . As > aj:b, we should have b(a —2) < 2a. But this does not hold for
a

b > a > 4. So we conclude that 7 is nonpositive, and Theorem 3 is proven. O

2 3 3 2
Proof of theorem 4. § > %(cH—b)—l—g implies 6 > %+7a > max g, a -+ %} ,

and all arguments, including the argument for the case |Y'| < b, can be carried
through. O

Proof of theorem 5. Claims 1, 2 and 3 still hold with the hypotheses of

Theorem 5, so the proof of Theorem 5 begins analogously to that of Theorem 3,

and we reach the assumption 0 < —|X| < |Y| < b. Now, we examine the missing
a

case.

Case |Y| < b.



We know that 0 < |X| <a—1 (as | X]| < %\Y\) Since G has edge-connectivity

at least k, each component of G — (X UY') sends at least k — | X| edges to Y, so
Z Y d(y) - €<X7 Y)

hX,Y) < = :

It follows that

Zer d(y) - e(X7 Y)

r(X,Y) < Ty —O|X] +alY|+e(X,Y) = > _d(y),
- | | yey
k—|X|—1
r(XY) £ SR Y) - Y d) - X+ alY
yey
k—|X|—1 L
As 0 <|X| <a—1and k> a we have ThoIX > 0 and inserting e(X,Y) —
> d(y) < |X||Y] = 6]Y]| we obtain
yey
k—|X|—1
6, Y) £ S LS 0XNY = aiy) - o+ ol
k—|X|—1 k—|X|—1

(X, Y) < [Y|(a - Y] =0)[X].

4]
R e Y
The last term is nonpositive, since |Y| < b; so to have 7(X,Y’) < 0 it will suffice
that

(i) §>a k= X

k—X[—1

k—|X]|

—_— X <a-1

o s Klsae-t,
k—|X]|

we see that the inequality (i) is satisfied if £ > a + v/a, because am -

On one hand, as § > k, it is sufficient that k& > «a

%):a—i-\/agk.

a(l+ ) <a(l+

1
k—|X|-1
On the other hand, we have

an
a+b

> a1+ 2).

o>
- b

b b
If k>a+ —, and as | X| < a— 1, it follows that £k — | X| —1 > — and
a a

k—|X 1
aﬁXH—‘l =a(l+ m) <a(l+ %) < ¢ and hence, also in this case,
the inequality (i) is satified; and 7(X,Y) < 0.
This proves Theorem 5. a
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