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Abstract

The domination numberγ(G) of a graphG is the minimum cardinality
of a subsetD of V (G) with the property that each vertex ofV (G) − D
is adjacent to at least one vertex ofD. For a graphG with n vertices we
defineǫ(G) to be the number of leaves inG minus the number of stems inG,
and we define the leaf densityζ(G) to equalǫ(G)/n. We prove that for any
graphG with no isolated vertex,γ(G) ≤ n(1−ζ(G))/2 and we characterize
the extremal graphs for this bound. Similar results are obtained for the total
domination number. The2-partition domination numberγ(G, π2) of a graph
G and a2-partitionπ2 = {V1, V2} of V (G) is defined by the sumγ(G) +
γG(V1)+γG(V2). We prove that for any graphG with no isolated vertex and
any2-partitionπ2 of V (G), γ(G, π2) ≤ 3n(1−ζ(G))/2 and we characterize
the extremal graphs. For graphs with leaf densityζ > 1/6, this new bound is
an improvement of the bound given by B. Hartnell and P. D. Vestergaard [J.
Combin. Math. Combin. Comput. 2003, Aug., 46].
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1 Introduction

A subsetD of the vertex set of a graphG is adominating set of G if each vertex of
V (G)−D is adjacent to at least one vertex ofD. Thedomination number γ(G) of
a graphG is the minimum cardinality of a dominating set ofG. A leaf is a vertex
of degree one.

The problem of determining the domination number is NP-complete (Garey and
Johnson, 1979) and therefore much effort has been put into attaining upper and
lower bounds for the domination number. An early result due to Ore (1962) states
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that the domination number of any graphG of ordern and containing no isolated
vertex is at mostn/2. Better upper bounds have been obtained for graphs with min-
imum degree greater than one (see Haynes et al., 1998). However, for some graphs
with many leaves then/2-bound is far from the actual value of the domination
number. For instance,γ(K1,n−1) ≤ n/2 is a rather crude bound whenn is large.
We give a new upper bound, which takes into account the density of the leaves.

We use the following notation. LetL(G) denote the set of leaves in a graphG,
and letL(v) denote the set of leaves adjacent tov. A vertex that is adjacent to a
leaf is called astem, and the set of all stems ofG will be denoted byS(G). For
i = 1, . . . , ∆(G) we define

Si(G) = {v ∈ V (G) | v is adjacent to preciselyi leaves}.

Thus the elements ofSi(G) are the vertices ofG with preciselyi adjacent leaves.
Let si(G) = |Si(G)|, s(G) := |S(G)| =

∑
i≥1 si(G), and l(G) = |L(G)|. A

corona graph G is a graph wheres1(G) = n/2, i.e., each vertex is a leaf or a stem
adjacent to exactly one leaf.

We introduce two new graph parameters;ǫ andζ. First, we define

ǫ(G) :=

∆(G)∑

i=2

si(G)(i− 1) = l(G)− s(G).

Secondly, we define theleaf density ζ(G) of a graphG by

ζ(G) :=
ǫ(G)

n
=

l(G)− s(G)

n
.

This concept enables us to compare the leaf density of different graphs.

For any graph parameterµ(G), we may writeµ whenever the graphG under con-
sideration is given by the context.

In the following sections, we consider three different domination parameters and
give upper bounds of the domination parameters in terms of the order and the leaf
density. In each case, we exhibit the extremal graphs.

2 An Improvement of Ore’s Theorem

We shall use the following two classical theorems on domination.

Theorem 2.1 (Ore, 1962)
If G is a graph with no isolated vertex, thenγ(G) ≤ n)/2.

Theorem 2.2
For any graphG with no isolated vertex,γ(G) = n/2 if and only if each compo-
nent ofG is a 4-cycle or a corona graph.
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The above theorem was proved independently by Payan and Xuong (1982) and
Fink et al. (1985). Our result is as follows.

Theorem 2.3
Let G denote any graph with no isolated vertex. Then

γ(G) ≤
n− ǫ

2
= (1− ζ)

n

2
, (1)

and equality holds, if and only if, each component ofG is a4-cycle or a connected
graph in which each vertex is a leaf or a stem.

Proof. Let G′ denote the subgraph ofG obtained by removing|L(v)| − 1 leaves
from each stemv of G. ThenG′ is a graph with no isolated vertex, and

n(G′) = n(G)−

∆(G)∑

i=2

si(i− 1) = n(G)− ǫ(G).

From Theorem 2.1 we obtainγ(G′) ≤ n(G′)/2 = (n(G) − ǫ(G))/2. Let D be
a γ(G′)-set which contains all stems ofG′ and no leaves ofG′. ThenD is also a
dominating set ofG, and soγ(G) ≤ (n(G)− ǫ(G))/2.

Now, suppose thatγ(G) = (n(G)−ǫ(G))/2. LetD be aγ(G′)-set which contains
all stems ofG′ and no leaves ofG′. ThenD is also a dominating set ofG, and
|D| < n(G′)/2 would implyγ(G) < (n(G)−ǫ(G))/2, a contradiction. Hence we
must haveγ(G′) = n(G′)/2, which, by Theorem 2.2, implies that each component
H of G′ is either a4-cycle or a corona graph.

If H is a4-cycle, thenH is also a4-cycle component ofG, and ifH is a corona
graph, thenH corresponds to a component inG in which every vertex is a leaf or
a stem.

Now for the converse. LetH1, . . . , Hk denote the components ofG. Thenǫ(G) =
ǫ(H1) + · · · + ǫ(Hk), and showingγ(G) = (n(G) − ǫ(G))/2 is equivalent to
showingγ(Hj) = (n(Hj)− ǫ(Hj))/2 for everyj ∈ {1, . . . , k}.

If Hj = C4, thenǫ(Hj) = 0 andγ(Hj) = 2 = (n(Hj)− ǫ(Hj))/2, and we have
the desired equality. Now suppose that every vertex ofHj is a leaf or a stem. If
Hj = K2, thenǫ(Hj) = 0 andγ(Hj) = 1 = (n(Hj) − ǫ(Hj))/2. Otherwise,
if Hj 6= K2, then every vertex ofHj is either a leaf or a stem vertex, but not
both. This impliesn(Hj) = l(Hj) + s(Hj). Let D denote aγ(Hj)-set. We may
w.l.o.g. assumeS(Hj) ⊆ D. On the other hand,S(Hj) is a dominating set, and so
D = S(Hj). Hence

γ(Hj) = s(Hj)

=
l(Hj) + s(Hj)− (l(Hj)− s(Hj))

2
=

n(Hj)− ǫ(Hj)

2
,

and we have the desired equality. This completes the proof.
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3 Total Domination and Leaf Density

In this section we give an upper bound of the total dominationnumberγt in terms
of the number of vertices and the leaf density. A subsetS of the vertex setV (G) of
a graphG is atotal dominating set of G if every vertex ofV (G) is adjacent to some
vertex ofS. Thetotal domination number γt(G) of G is the minimum cardinality
of a total dominating set ofG.

The 2-corona of a graph H is the graph of order3n(H) obtained fromH by
attaching aK2 at each vertex ofH. If a graphG is a 2-corona of some graph
H, thenG is said to be a2-corona graph. Clearly, a2-corona graphG has total
domination number equal to2n(G)/3.

We use the notion of leaf density to extend the two following theorems on total
domination.

Theorem 3.1 (Cockayne et al., 1980)
Let G denote a connected graph of ordern ≥ 3. Thenγt(G) ≤ 2n/3.

Theorem 3.2 (Brigham et al., 2000)
Let G denote a connected graph of ordern ≥ 3. Thenγt(G) = 2n/3 if and only if
G ∈ {C3, C6} or G is a2-corona graph.

Our result is as follows.

Theorem 3.3
Let G denote a connected graph of ordern ≥ 3, which is not a star. Then

γt(G) ≤
2

3
(n− ǫ) =

2

3
n(1− ζ), (2)

and equality holds, if and only if,G ∈ {C3, C6} or G can be constructed from a
2-corona graphH by attaching some (possibly none) leaves at the stems ofH.

Proof. Let G′ denote the subgraph ofG obtained by removing|L(v)| − 1 leaves
from each stemv of G. Obviously, the graphG′ is connected, and

n(G′) = n(G)−

∆(G)∑

i=2

si(i− 1) = n(G)− ǫ(G).

If n(G′) ≤ 2, thenG is a star, which contradicts our assumptions. Hencen(G′) ≥
3, and therefore Theorem 3.1 impliesγt(G

′) ≤ 2n(G′)/3 = 2(n(G) − ǫ(G))/3.
Let D be aγt(G

′)-set. SinceD must dominate the leaves ofG′ from the stems of
G′, it follows thatD contains all stems ofG and soD is a total dominating set of
G. Thus,γt(G) ≤ |D| ≤ 2(n(G)− ǫ(G))/3.

Supposeγt(G) = 2(n − ǫ)/3. Then we must haveγt(G
′) = 2n(G′)/3 and, by

Theorem 3.2,G′ ∈ {C3, C6} or G′ is a2-corona graph. In the former case we find
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thatG ∈ {C3, C6} and in the later case we find thatG can be constructed from the
2-corona graphG′ by attaching some (possibly none) leaves at the stems ofG′.

Conversely, ifG ∈ {C3, C6}, then we clearly obtain equality in (2). Now suppose
thatG can be constructed from a2-corona graphH by attaching some (possibly
none) leaves at the stems ofH. Thenγt(G) = γt(H) = 2n(H)/3 andn(H) =
n(G)− ǫ(G). This completes the proof.

4 Partition Domination and Leaf Density

In this section we give an upper bound of thek-partition domination number
γ(G, πk) in terms of the number of vertices and the leaf density. The concept of
partition domination was introduced by Hartnell and Vestergaard (2003). Other
references on this topic include Seager (1998), Tuza and Vestergaard (2002) and
Henning and Vestergaard (2002).

By a k-partition (k = 2, 3, . . .) of V (G) we shall mean pairwise disjoint subsets
V1, V2 . . . , Vk ⊆ V (G) such thatV1 ∪ V2 · · · ∪ Vk = V (G). Note that some of
the subsetsV1, . . . , Vk may be empty. IfVi 6= ∅, then a setDi ⊆ V (G) is called
a dominating set forVi if each vertex ofVi not in Di has a neighbour inDi. The
domination numberγG(Vi) is the smallest cardinality of a dominating set ofVi.
We defineγG(∅) = 0.

The k-partition domination number γ(G, πk) of a graphG with respect to ak-
partitionπk is defined to be the number

γ(G, πk) = γ(G) +

k∑

i=1

γG(Vi).

Since any dominating set ofG is also a dominating set forVi, we obtain the fol-
lowing.

Observation 4.1
For any graphG andk-partitionπk, we haveγ(G, πk) ≤ (k + 1)γ(G).

Together, Observation 4.1 and Theorem 2.3 imply the following result.

Corollary 4.2
Let k denote any positive integer greater than one and letG denote any graph with
no isolated vertex. Then

γ(G, πk) ≤ (k + 1)
n− ǫ

2
= (k + 1)(1− ζ)

n

2
.

For k = 2, the extremal graphs of the bound stated in Corollary 4.2 aregiven in
Theorem 4.3. An example of an extremal graph is given in Figure 1.
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Figure 1: Let all the vertices labelledv1 be contained inV1 and let
all the vertices labelledv2 be contained inV2. The unlabelled vertices
may be arbitrarily distributed amongV1 andV2. With this partition we
obtainγ(G, π2) = 3s = 3(n− ǫ)/2.

Theorem 4.3
Let G denote any graph with no isolated vertex. Then

γ(G, π2) =
3 (n− ǫ)

2
= 3(1− ζ)

n

2

if and only if each componentH of G is either aK2 with one vertex in each
partition setV1 andV2, or H satisfies (i) and (ii).

(i) Every vertex inH is either a stem or a leaf, and

(ii) for everyv ∈ S(H), we must haveL(v) ∩ V1 6= ∅ andL(v) ∩ V2 6= ∅.

Proof. First, suppose thatγ(G, π2) = 3(n − ǫ)/2. Then we must haveγ(G) =
(n − ǫ)/2, γG(V1) = (n − ǫ)/2 andγG(V2) = (n − ǫ)/2. Now, by Theorem 2.3,
each componentH of G is either a4-cycle or every vertex ofH is a stem or a
leaf. We must haveγ(H, π′2) = 3(n(H) − ǫ(H))/2 for every component ofG,
whereπ′2 = {V ′

1 , V
′
2} is the2-partition induced byπ2 onV (H). ForH = C4, we

obtainγ(H, π′2) = 4 < 6 = 3(n(H)− ǫ(H))/2, a contradiction. IfH = K2, then
γ(H, π′2) = 3(n(H)− ǫ(H))/2 = 3 if and only if H has one vertex inV1 and the
other inV2, and we are done. IfH 6= K2, then every vertex ofG is either a stem or
a leaf. This proves (i).

Assume that there is a vertexv ∈ S(H) such thatL(v) ⊆ V ′
1 or L(v) ⊆ V ′

2 , say
L(v) ⊆ V ′

1 . Let k := |L(v)|. If v is a leaf inH − L(v), then l(H − L(v)) =
L(H) − k + 1 ands(H − L(v)) ≥ s(H) − 1. If v is not a leaf inH − L(v),
then l(H − L(v)) = l(H) − k and s(H − L(v)) = s(H) − 1. In any case,
ǫ(H − L(v)) ≥ ǫ(H)− k + 1 and we obtain

γH(V ′
2) ≤ γH−L(v)(V

′
2) ≤

n(H − L(v))− ǫ(H − L(v))

2

≤
n(H)− k − (ǫ(H)− k + 1)

2
<

n(H)− ǫ(H)

2
,

which is a contradiction. This proves (ii).

For the converse we need to showγ(H, π′2) = 3(n(H) − ǫ(H))/2 for each com-
ponentH of G. If H = K2 with one vertex in each partition setV1 andV2, then
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clearly the desired equality holds. Suppose thatH satisfies (i) and (ii). ThenS(H)
is a minimum dominating set ofV (H), V ′

1 , andV ′
2 , that is,γ(H, π′2) = 3s(H).

Since every vertex is either a leaf or a stem we obtainl(H) + s(H) = n(H),
which impliesn(H) = 2s(H)+(l(H)−s(H)) = 2s(H)+ǫ(H), andγ(H, π′2) =
3s(H) = 3(n(H)− ǫ(H))/2. This completes the proof.

A generalization of Theorem 4.3 may be obtained by a similar proof.

Theorem 4.4
Let G denote any graph with no isolated vertex, and letk denote any integer greater
than one. Then

γ(G, πk) = (k + 1)
(n− ǫ)

2
= (k + 1)(1− ζ)

n

2

if and only if each componentH of G satisfies (i-ii).

(i) Every vertex inH is either a stem or a leaf, and

(ii) for everyv ∈ S(H) andj ∈ {1, 2, . . . , k}, L(v) ∩ Vj 6= ∅.

Hartnell and Vestergaard (2003) gave another upper bound ofγ(G, π2).

Theorem 4.5 (Hartnell and Vestergaard)
If G is a connected graph of ordern ≥ 3, thenγ(G, π2) ≤ 5n/4.

Now the question is which of the two bounds presented in Theorem 4.5 and Corol-
lary 4.2 is better. Calculations show that

3(1− ζ)
n

2
<

5

4
n ⇐⇒ ζ >

1

6
.

Hence we have obtained a better bound ofγ(G, π2) for graphs with leaf density
ζ > 1/6.
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