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Abstract

The domination numbey(G) of a graphG is the minimum cardinality
of a subsetD of V(G) with the property that each vertex &f(G) — D
is adjacent to at least one vertex bf For a graphG with n vertices we
definee(G) to be the number of leaves @ minus the number of stems @,
and we define the leaf densifyG) to equale(G)/n. We prove that for any
graphG with no isolated vertexy(G) < n(1—((G))/2 and we characterize
the extremal graphs for this bound. Similar results areinbthfor the total
domination number. Thg-partition domination numbey(G, 72) of a graph
G and a2-partitionty, = {V4,V,} of V(G) is defined by the sum(G) +
v (V1) +7v¢(Vz). We prove that for any grapf with no isolated vertex and
any2-partitionms of V(G), v(G, m2) < 3n(1—¢(G))/2 and we characterize
the extremal graphs. For graphs with leaf dengity 1/6, this new bound is
an improvement of the bound given by B. Hartnell and P. D. &ggstard [J.
Combin. Math. Combin. Comput. 2003, Aug., 46].
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1 Introduction

A subsetD of the vertex set of a grapt is adominating set of G if each vertex of
V(G) — D is adjacent to at least one vertex/of Thedomination number ~(G) of
a graphG is the minimum cardinality of a dominating set@f A leaf is a vertex
of degree one.

The problem of determining the domination number is NP-detep(Garey and
Johnson, 1979) and therefore much effort has been put itdialg upper and
lower bounds for the domination number. An early result du®te (1962) states



that the domination number of any graghof ordern and containing no isolated
vertex is at most /2. Better upper bounds have been obtained for graphs with min-
imum degree greater than one (see Haynes et al., 1998). ldovievsome graphs
with many leaves the /2-bound is far from the actual value of the domination
number. For instancey( K ,—1) < n/2 is a rather crude bound whenis large.

We give a new upper bound, which takes into account the deoisihe leaves.

We use the following notation. Lek(G) denote the set of leaves in a gragh
and letL(v) denote the set of leaves adjacenttdA vertex that is adjacent to a
leaf is called astem, and the set of all stems &f will be denoted byS(G). For
i=1,...,A(G) we define

Si(G) ={v € V(G) | vis adjacent to preciselyleaves}.

Thus the elements of;(G) are the vertices of7 with precisely: adjacent leaves.
Let s;(G) = [Si(Q)], s(G) = [S(G)| = X ;51 5i(G), andl(G) = |L(G)|. A
corona graph G is a graph where, (G) = n/2, i.e., each vertex is a leaf or a stem
adjacent to exactly one leaf.

We introduce two new graph parameterand(. First, we define

A(G)
«(G) =Y si(@)(i—1) =U(G) - 5(G).
=2
Secondly, we define tHeaf density ((G) of a graphG by

n n

This concept enables us to compare the leaf density of diftegraphs.

For any graph parametgfG), we may writei, whenever the grap&' under con-
sideration is given by the context.

In the following sections, we consider three different doation parameters and
give upper bounds of the domination parameters in termseobitier and the leaf
density. In each case, we exhibit the extremal graphs.

2 AnImprovement of Ore’s Theorem

We shall use the following two classical theorems on donnat

Theorem 2.1 (Ore, 1962)
If G is a graph with no isolated vertex, theiG) < n)/2.

Theorem 2.2
For any graphG with no isolated vertexy(G) = n/2 if and only if each compo-
nent ofG is a 4-cycle or a corona graph.
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The above theorem was proved independently by Payan andgXg®82) and
Fink et al. (1985). Our result is as follows.

Theorem 2.3
Let G denote any graph with no isolated vertex. Then
n—e

AG) € 5= = (103, (1)

and equality holds, if and only if, each componen€bis a4-cycle or a connected
graph in which each vertex is a leaf or a stem.

Proof. Let G’ denote the subgraph ¢f obtained by removingL(v)| — 1 leaves
from each stemy of G. ThenG’ is a graph with no isolated vertex, and

A(G)
n(G) =n(G)— > si(i—1) =n(G) — €(G).
=2
From Theorem 2.1 we obtai(G’) < n(G’")/2 = (n(G) — €(G))/2. Let D be

a~(G’)-set which contains all stems 6f and no leaves ofi’. ThenD is also a
dominating set of7, and soy(G) < (n(G) — €(G))/2.

Now, suppose that(G) = (n(G) —e(G)) /2. Let D be ay(G’)-set which contains

all stems ofG’ and no leaves of:’. ThenD is also a dominating set a¥, and

|D| < n(G")/2would implyy(G) < (n(G) —e(G))/2, a contradiction. Hence we
must havey(G’) = n(G’) /2, which, by Theorem 2.2, implies that each component
H of G’ is either ad-cycle or a corona graph.

If H is a4-cycle, thenH is also a4-cycle component of7, and if H is a corona
graph, thend corresponds to a componentGhin which every vertex is a leaf or
a stem.

Now for the converse. Lelly, . .., Hy denote the components 6f Thene(G) =
€(Hy) + --- + €(Hy), and showingy(G) = (n(G) — €(G))/2 is equivalent to
showingy(H;) = (n(H;) — e(H,))/2 for everyj € {1,...,k}.
If H; = Cy, thene(H;) = 0 andvy(H;) = 2 = (n(H;) — e(H;))/2, and we have
the desired equality. Now suppose that every vertex/pis a leaf or a stem. If
H; = Ky, thene(H;) = 0 andv(H;) = 1 = (n(H;) — €(H,))/2. Otherwise,
if H; # K, then every vertex ofi; is either a leaf or a stem vertex, but not
both. This implies:(H;) = I(H;) + s(H;). Let D denote ay(H;)-set. We may
w.l.0.g. assume&'(H;) € D. On the other handy(H;) is a dominating set, and so
D = S(H;). Hence
V(Hj) = s(Hj)

_ U(Hj) + s(Hj) — (I(Hj) — s(Hj)) _ n(H;) — e(Hj)
2 2 ’
and we have the desired equality. This completes the proof. |
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3 Total Domination and L eaf Density

In this section we give an upper bound of the total dominatiombery; in terms
of the number of vertices and the leaf density. A sulSset the vertex set’ (G) of

a graphG is atotal dominating set of GG if every vertex oft’ (G) is adjacent to some
vertex ofS. Thetotal domination number ~;(G) of G is the minimum cardinality
of a total dominating set af.

The 2-corona of a graph H is the graph of ordeBn(H) obtained fromH by
attaching aK, at each vertex off. If a graphG is a 2-corona of some graph
H, thenG is said to be &-corona graph. Clearly, a2-corona graphG has total
domination number equal &n(G)/3.

We use the notion of leaf density to extend the two followihgdrems on total
domination.

Theorem 3.1 (Cockayne et al., 1980)
Let G denote a connected graph of order 3. Thenv,(G) < 2n/3.

Theorem 3.2 (Brigham et al., 2000)
LetG denote a connected graph of order 3. Theny,(G) = 2n/3 if and only if
G € {Cs,Cs} orG is a2-corona graph.

Our result is as follows.

Theorem 3.3
Let G denote a connected graph of order 3, which is not a star. Then

2

W@ < 3 —) = 2n(1 =), @

and equality holds, if and only if7 € {Cs,Cs} or G can be constructed from a
2-corona graphi by attaching some (possibly none) leaves at the sterfk of

Proof. Let G’ denote the subgraph ¢f obtained by removingL(v)| — 1 leaves
from each stemy of G. Obviously, the grapl&”’ is connected, and

A(G)
n(G) =n(G)— > si(i—1) =n(G) - ¢(G).

=2
If n(G’) < 2, thenG is a star, which contradicts our assumptions. Henge') >
3, and therefore Theorem 3.1 implieg G') < 2n(G")/3 = 2(n(G) — €(G))/3.
Let D be av,(G’)-set. SinceD must dominate the leaves 6f from the stems of
G’, it follows that D contains all stems off and soD is a total dominating set of
G. Thus,(G) < |[D] < 2(n(G) — €(G)) /3.
Supposey:(G) = 2(n — €)/3. Then we must have;(G') = 2n(G’)/3 and, by
Theorem 3.2(¢' € {C3,Cs} or G’ is a2-corona graph. In the former case we find
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thatG € {Cs,Cs} and in the later case we find th@tcan be constructed from the
2-corona grapl’ by attaching some (possibly none) leaves at the sterG¥.of

Conversely, ifG € {C3,Cs}, then we clearly obtain equality in (2). Now suppose
that G can be constructed from2corona graphd by attaching some (possibly
none) leaves at the stems Bf. Theny,(G) = w(H) = 2n(H)/3 andn(H) =
n(G) — €(G). This completes the proof. [ |

4 Partition Domination and L eaf Density

In this section we give an upper bound of thepartition domination number
~v(G, ) in terms of the number of vertices and the leaf density. Threept of
partition domination was introduced by Hartnell and Vegaard (2003). Other
references on this topic include Seager (1998), Tuza anttigzgard (2002) and
Henning and Vestergaard (2002).

By a k-partition (k = 2,3,...) of V(G) we shall mean pairwise disjoint subsets
Vi,Va..., Vi € V(G) such thatV; U Vs --- UV, = V(G). Note that some of
the subsetd’, ..., Vi, may be empty. IV; # &, then a seD; C V(G) is called
a dominating set fo¥; if each vertex ofl; not in D; has a neighbour iD;. The
domination numbery;(V;) is the smallest cardinality of a dominating setigf
We defineyq (@) = 0.

The k-partition domination number ~(G, 7) of a graphG with respect to &-
partition, is defined to be the number

k
(G m) = v(G) + ) v6(Va).
i=1

Since any dominating set @f is also a dominating set fdr;, we obtain the fol-
lowing.

Observation 4.1
For any graphtz andk-partitionry,, we havey(G, ) < (k+ 1)v(G).

Together, Observation 4.1 and Theorem 2.3 imply the folhgwisult.

Corollary 4.2
Letk denote any positive integer greater than one an@ léénote any graph with
no isolated vertex. Then

AGm) < (k+ D)7~ = (k+ D= Q).

For k = 2, the extremal graphs of the bound stated in Corollary 4.2)aen in
Theorem 4.3. An example of an extremal graph is given in EEdur
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Figure 1: Let all the vertices labelled; be contained irf; and let
all the vertices labelled, be contained iiV;. The unlabelled vertices
may be arbitrarily distributed amonig andV;. With this partition we
obtainy(G,m) =3s=3(n—¢€)/2.

Theorem 4.3
Let G denote any graph with no isolated vertex. Then

3(n—c¢)
2

if and only if each componenti of G is either aK, with one vertex in each
partition setV, andVs, or H satisfies (i) and (ii).

G, m) = =3(1- Q)3

(i) Every vertex inH is either a stem or a leaf, and

(ii) foreveryv € S(H), we must havd.(v) N Vi # @ andL(v) NV, # &.

Proof. First, suppose thai(G,m2) = 3(n — €)/2. Then we must have(G) =
(n—¢€)/2,7(V1) = (n —€)/2 andyg(V2) = (n — €)/2. Now, by Theorem 2.3,
each componentl of G is either a4-cycle or every vertex off is a stem or a
leaf. We must have/(H, 7)) = 3(n(H) — ¢(H))/2 for every component of7,
wherer), = {V/, Vj} is the2-partition induced byr, on V' (H). For H = C4, we
obtainy(H,nh) =4 < 6 = 3(n(H) — ¢(H))/2, a contradiction. It = K>, then
v(H,7h) =3(n(H) — e(H))/2 = 3ifand only if H has one vertex i¥; and the
other inl;, and we are done. lf # K, then every vertex off is either a stem or
a leaf. This proves (i).

Assume that there is a vertexc S(H) such thatL(v) C V{ or L(v) C Vj, say
L(v) C V/. Letk := |L(v)|. If vis aleaf inH — L(v), thenl(H — L(v)) =
L(H)—k+1ands(H — L(v)) > s(H) — 1. If vis not a leaf inH — L(v),
thenl(H — L(v)) = I(H) — k ands(H — L(v)) = s(H) — 1. In any case,
e(H — L(v)) > €¢(H) — k + 1 and we obtain
n(H — L(v)) —e(H — L(v
W) < (V) < W) A2 E)
n(H)—k—(e(H)—k+1) n(H)—e(H)

2 < 2 ’

<

which is a contradiction. This proves (ii).

For the converse we need to showH, 75) = 3(n(H) — e(H))/2 for each com-
ponentH of G. If H = K> with one vertex in each partition sét and V5, then
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clearly the desired equality holds. Suppose tiatatisfies (i) and (ii). The®(H)
is a minimum dominating set of (H), V{, and V3, that is,y(H, 75) = 3s(H).
Since every vertex is either a leaf or a stem we obtaif) + s(H) = n(H),
which impliesn(H) = 2s(H)+ (I(H)—s(H)) = 2s(H)+€e(H), andy(H, 7)) =
3s(H) =3(n(H) —e(H))/2. This completes the proof. [ |

A generalization of Theorem 4.3 may be obtained by a similaofp
Theorem 4.4

LetG denote any graph with no isolated vertex, and:ldenote any integer greater
than one. Then

(G, ) = (k+ 1)(” ; © _ (k+1)(1— g)g

if and only if each componerf of G satisfies (i-ii).
(i) Every vertex inH is either a stem or a leaf, and

(i) foreveryv € S(H) andj € {1,2,...,k}, L(v)NV; # @.

Hartnell and Vestergaard (2003) gave another upper boun@@frs).

Theorem 4.5 (Hartnell and Vestergaard)
If G is a connected graph of order> 3, theny(G, m2) < 5n/4.

Now the question is which of the two bounds presented in Téraet.5 and Corol-
lary 4.2 is better. Calculations show that

n b 1

Hence we have obtained a better boundy @7, 72) for graphs with leaf density
¢>1/6.
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